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INTRODUCTION':

The purpose of the following discussion is to describe the development of a
3-D free Lagrangian hydrodynamics algorithm. The 3-D algorithm is an outgrowth
of the 2-D free Lagrange model that is fully described in Ref. 1. Only the more
pertinent issues of the free Lagrange algorithm will be presented, the details of the
rest of the code development project are interesting but not appropriate in the
context of the free Langrange conference. Let it suffice to say that a complete
production code is being developed to support the free Lagrange algorithm to be
described. A graphic description that outlines this code development project is
presented in Figure 1.
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Figure 1. Block structure of the 3-I) code, illustruting the four leveis that make
un the code.



The main objective of this project is to devzlop a computer model that can be
used to simulate fluid flow in three dimensions. The inspiration for using free
Lagrange as a basis for a hydrodynamics code was gained from the work of Crowley
(Ref. 2), Fritts and Boris (Ref. 3), and Kirkpatrick (Ref. 4). The 2-D code,
described in Ref. 1, was based on this previous work. This two dimensional model
showed several aitractive features about free Lagrange. First, it showed that free
Lagrange can be used to handle fluid flow problems that exhibit strong shearing
forces which classically could only be handled by Eulerian type algorithms.

Second, the accuracy of a free Lagrange algorithm was shown to be sufficient,
with the irregular mesh, to produce credible solutions. Third, due to the arbitrary
connectivity of the free Lagrange logic, meshes can be variably zoned. This allows
the user to put the resolution where it is needed.

All three of these features of free Lagrange have been exploited to extend the
2-D model to include the third dimension. In doing so many aspects of large scale
code development have been investigated. Several modern software tools have been
used to make the manipulation of the arbitrary connectivity matrix, that is
associated with free Lagrange, easier. Just for reference these tools include; a

dynamic (heap) memory manager, a storage block manager and also a relational data
base manager.

DESCRIPTION OF THE FREE LAGRANGE ALGORITHM:

The main features of the free Lagrange algorithm that identifies it from a
standard Lagrange algorithm is the connectivity matrix that both defines the nearest
neighbors for each point and the shape of the computational cells over which the
fluid equations are integrated. A construction technique, that creates a VORONOI
mesl., 15 used to identify nearest neighbors and define the mesh cells. The Vornnoi
mesh that is constructed has several properties that make it un cxcellent choice for
maintaining the connectivity matrix for the 3-D code, these are:

A) The set of resulting polyhedra map the space defined by the mass points
and bounding surfaces uniquely, i.e., none of the polyhedra overlap and
nearest neighbors are guaranteed to be reciprocal.

B) Each polyhedron remains convex. This is accomplished by changing the
area and the number of faces, i.e., neighbor swapping.

C) The volume and surface area of each polyhedron changes continuously.
These and other aspects of the Voronoi mesh will be discussed more thoroughly in
later sections.

Onc¢ of the more important goals of the 3-D code is to be able to couple
varioue hydrodynamic algorithms logether. This means that free Lagrangian hydro
will be used in regions where the flow field is most distorted. Then, in the (more)
well behaved regions we will use an adaotive rezoning technique. with a mesh



composed of mass points that have fixed connectivity. These two algorithms will
then be coupled through a third algorithm called a ZOC. The free Lagrange and
the ZOC algorithms wiil now be described in detail. The detailed hydrodynamic
equations, that are solved by these algorithms, along with their finite difference
representations are discussed in detail in Appendix A.

The basic features that describe the free Lagrange algorithm are listed below:

A) All mesh quantities are cell centered.

B) The computational! domain is described by an arbitrary distribution of mass

points.

C) The code automatically constructs its connectivity matrix.

D) Mass points can be merged and/or added to the mesh.

The code determines its connectivity matrix by constructing a unique polyhedron
about each mass point. The resulting polyhedral mesh is known as a Voronoi mesh.
The faces of the polyhedron determine the set of "nearest" neighbors with which a
mass point interacts. The faces of the polyhedron are represented by intersecting
perpendicular, bisecting planes between a given mass point and each of its
neighbors. The details of this construction process are described more fully in
Appendix B. Figure 2 shows several examples of Voronoi cells. The set of
polyhedra that describe the mesh completely and uniquely span the space over
which the mass points are distributed. Figure 3 shows a 2-dimensional projection of
a 3-dimensional mesh. where the arbitrary polyhedra reduce to arbitrary polygons.

Due to the fact that all physical quantities are carried at cell centered mass
points, each point can change the set of "nearest" neighbors that it associates with
by changing the shape of the polyhedron surrounding it while still retaining its
Lagrangian definition. The neighbor changing process is smooth and continuous
because of the integral nature of the algorithm. Two points become neighbors when
a face with "epsilon" surface area appears between them. These points will drop
each other as "nearest" neighbors when (and if) this face area shrinks below
"epsilon".

There are several advantages and disadvantages associated with free Lagrange
hydro. The advantages are obvious to anyone doing hydrodynamic calculations.
Due to the arbitrary connectivity of the mesh and the ability to change this
connectivity, highly distorted flows can be modeled by using a Lagrangian
elgorithm. Also, since the mesh maintains itself, no manual rezoning is needed
(this is extremely important in a 3-dimensional code). Complex geometries that

require vuriable zoning can be sectup relatively easily since the code figures out the
conncectivity matrix from an arbitrary distribution of mass points. The main
disadvantage of this method is the overheed associated with maintaining and
processing the connectivity lists, but since the neighbor lists are unique, they are
very amenable to a calculation using a multitasking algorithm (i.e., the neighbor
searches can be dune in any order, but the resulting ~lobal connectivity matrix is
the same). Also. future machines that support hardware gather-scatter operations



Figure 2. Examples of several Voronoi cells. The Voronoi cells are the polyhedral
shaped objects. The straight lines that end at a point represent the
connections between the central mass point and its "nearest" neighbors.

will improve the efficiency of this algorithm.

One of the weakest aspects of the free Lagrange method just described is the
treatment of continuous interfaces. This results froin the fact that the edges of the
computational volumes are arbitrarily defined to be midway between two "nearest"
neighbors. This definition, while consistent with the Lagrangian equations, leads
to a poor definition of a continuous interface. The realization of this fact
suggested that an interface tracking algorithm was needed to follow the motion of
interfaces. We will now describe the algorithm that is being used and how we
intend to develop it into a full blown interface tracking algoritam, along with some
of the positive side effects, in relation to distributed processing and slip-line
treatment.

A little reflection on two key properties of interfaces will help the reader's
understanding of the algnrithm to be described. First, a continuous interface
separates what could be considered immiscible fluids, i.e., fluid "A" remains
distinct from fluid "B" even though interpenetration may occur. Second, an
interface can be described in a space-that is one dimension less than the rest of

the problem. In one dimension an interface is & point, in two dimensions it is a

line. and in three Aimenscinnsg it is a rRurface Ceanaeralizine thie iden we eran
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Figure 3. 2-dimensional projection of & 3-dimensional Voronoi mesh.

represent an interface as a (N-1) construct in a N-dimensional space. Taking these

two concepts into consideration we came up with an interface tracking construct

called a Z20C. An example of a ZOC is shown in Figure 4, where several
observations can be made. First, we can see that the interface separating the two
fluids is distinct. Also, we notice that zoning away from the interface in the two
regions is disconiinuous with respect to the other region and the interface.

Most of the technical details of maintaining a ZOC will not be discussed, but
some of the more general aspects of this interface tracking concept may be
interesting. These are listed below:

A) A Z0C is essentially a special free Lagrange region that uses its

connectivity matrix to connect to the surrounding regions.
B) Points can be added or subtracted from a ZOC to maintain the interface.
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surface. The right figure shows the ccrresponding grid.

This process is made especially easy since a connectivity matrix is used to
connect points and thus the mesh reconnections account for the fact that a
point has been added or subtracted. The process of adding new points is
trivial because the Voronoi mesh indicates when a new point should be
added and where the new point should be located. The rest of the details
of adding a point involves the redistribution of mass, momentum, and
energy i1 a local region of space.

A Z0C will work in two dimensions, to maintiin a line interface, just as
well as in three dimensions.

The treatment of slip-lines should be automatic with a ZOC since there is
no restriction on the tangential velocity of the fluid on either side of the
interface.

This interface will be used to connect regions that use different hydro
algorithms. This means a free Lagrange algorithm can be used on one side
of th2 interface and & fixed mesh algorithm on the other side.

A ZOC makes a nature]l communication buffer for connecting two separate
a.gorithms that are running as distributed processes. This is where the
dimensionality of thr ZOC becomes important because the data transfer
between processes must be xept to a minimum. The separate region
processes ~re N-dimensiona! data structures and a Z7C is a (N-1) ata
structurz, which means the amount of information being communicated
between the regions is small compared to the regions themselves.



APPENDIX A
THE HYDRODYNAMIC EQUATIONS AND THEIR
FINITE DIFFERENCE REPRESENTATION

The hydrodynamic equations that are solved on this free Lagrange system of
mass points are given below. These equations represent the conservation of mass,
momentum, and specific internal energy, respectively;

Continuity Equation;
l % - -—.—
5Dt - Veu , (Eq. 1)

P = - - V1], (Eq. 2)

Conservation of Internal Energy;

p g% = -p(V-u) - (T:Vu) , (Eq. 3)
where,
p = fluid density ,
p = fluid pressure |,
€ = internal energy/unit mass ,
u = fluid velocity vector
T = total stress tensor , and
=14+Q ,
where,
T = stress tensor and
Q = artificial viscosity tensor
£2p div(@){(Tu) - Jdiviw)é} , if div (u) <0
Q= _ (Eq. 4)
0 , 1f div (u) 2 0
where,
div(u) = divergence of velocity vector u ,
Vu = dyadic product of the differential operator V and

the vel.vitv vector u



unit tensor , and

-
n

constant * local grid spacing

The algorithm used to solve these equations can be outlined as follows. First,
Equations 1 through 3 are integrated over an arbitrary volume (in reference to the
code we integrate over a computational cell). The volume integrals are transformea
to surface integrals by using the divergence theorem. The mean-value-theorem
from calculus is used to obtain average quantities. These resulting equations are
then cast into finite difference form as shown below. The following notation will be
used in writing the finite difference representation of the fluid flow equations;

mass point i, spatial position at (XI.YI,ZI) ,

i = jth nearest neighbor of mass point i, spatial position at (XJ,YJ,Z2J) |,
= total number of nearest neighbors associated with mass point i ,
= present time step (time =1t) |,
n + 1 = next time step (time =t + At) |,
Ri j = distance from mass point i to nearest neighbor j ,
i = area of polygon face separating mass point i from nearest neighbor j ,
i volume of the polyhedron associated with mass point i and nearest
2 neighbor j ,
Mi = mass of fluid associated with mass point i ,
Pi .= fluid pressure at the face associated with mass point i and nearest
) neighbor j ,
p; = fluid density in cell i ,
Ui . = fluid velocity at the face associated with mass point i and nearest
2 neighbor j , and
ﬂi . = normal vector to the face associated with mass point i and nearest
) neighbor j
Vn+1 (QQ) _ _.n ‘; A n+l A (Eq. 5)
i ‘pefiT Py jo1 i A q-
M 2 - -; P& A .- I B . -F .A (Eq. 6)
iDt/i - TE Mi, ML, P, T L2 Mg i, 1,] v
j=1 J=1
J “n+1 -
M2 =-p. 3 A .U A .- I . -[T 0], A .+
i'Dt7i i, i,] i,] 1,] . i,] i,j 1,]
Jj=1 j=1
+ = J . =
U..*Z n, . T, A, . (Eq. 7)
1,) =1 1,)] 1,) 1,)



APPENDIX B
MESH CONNECTIVITY
(NEAREST NEIGHBOR CALCULATIONS)

The purpose of this Appendix is to describe the manner in which the
connectivity matrix for the free Lagrange algorithm is calculated. The connectivity
matrix contains the "nearest" neighbors for all the mass points. These connections
are used for calculating surface areas and volumes of the Voronoi cells that make
up the computation mesh. In addition to describing the geometry of the cells the
connectivity matrix indicates which cells will interact hydrodynamically .

Each Vororoi cell is made of an arbitrary number of intersecting planes.
These planes construct a convex polyhedron with an arbitrary number of "faces"
about each mass puint. Each face forms a polygon with an arbitrary number of
"edges". The trick is to come up with an algorithm that can calculate the
connectivity matrix from an arbitrary distribution of points. As we proceed
through this discussion the two following definitions should be kept in mind:

A) "face" neighbor: Any two points that are "nearest" neighbors are
separated, in 3 dimensions, by a polygon shaped "face". A "face"
neighbor therefore refers to the "nearest" neighbor that is across a given
"face" from a given central point "I". There is a one-to-one
correspondence between the number of "face" neighbors that are associated
with a point and the number of "faces" that make up the polyhedral cell
surrounding that point.

B) "edge" neighbor: Each of the "faces" of a Voronoi cell is a polygon.
Each vertex of a given polygon "face" is found to be the center of a
sphere that passes through four points. The four points are: the central
point "I", its "face" neighbor "j", and two other points that are called
"edge" neighbors (they are referred to as "k-1" and "k"). Also, since
each' polyhedron is a closed figure each "edge" neighbor must also be a
"face" neighbor. It should be noted that there is a one-to-one
correspondenc= between the number of "edges" on a given polygonal "face"
and the number of "edge" neighbor associated with that "face".

The main idea in discovering the "nezarest" neighbors of a point is to identify the
list of "edge" neighbors for each "face" of the polyhedron surrounding that point.
As each set of "edge" neighbors is discovered they are put on a stack of "face"
neighbors, then the next "face" neighbor to be looked at is pulled from this stack.
When the stack of "face" neighbors is empty the Voronoi polyhedron is complete and
the connectivity for this given point has been found.

The process of constructing the connectivity matrix for a given point is
described 11 ' completely in the following steps:
A) Asremble a list of "possible" neighbors. This process depends on whether
or nnt the noint has been calculated before.



B)

a) If the point hasn't been calculated before.
1) Use any "logical" neighbor information to select as many potential
neighbors as possible.
2) Use a proximity rule to select a set of closest points based on
filters such as distance between and material type.
b) If the point has been calculated before.
1) Recall the old connectivity matrix for a given point.
2) Form the list of possible "nearest" neighbors from the old

"nearest"” neighbors plus the "nearest" neighbors of the old
"nearest" neighbors.
From this list of "possible"” neighbors we identify the 15! nfacer neighbor
by the procedure outlined below.
a) First all points are (ranslated so the coordinate axes are centered at
the central mass point, point "I", by using the following equation,

(Eq. 38)

where,

x2 = coordinates of a possible neighbor "2" ,

m—l

XI = coordinates of point "I" , and

nkin = number of points on the list of "possible" neighbors for
point nyn

b Select the first "face" neighbor by using the following equation,

nkin

N, = Index of [min ,_. (|i.|)] (Eq. 9)

where,
Ile = the distance to point £ and

N1 = index of the 1St "nearest" neighbor (this is the index into
the global mesh arrays)

c) Select the first "edge" neighbor for the first "face" by using the following
equation.

nkin - -
E, o = Index of [min ., (W, 10K), = (X), [+

+ Hz cCOs ((xN)ll x'.) +

+ W X
‘3 lxl”l (Rn n)
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K,j the kth "edge" neighbor of the j"h "face" neighbor |,

[
"

(XN)j the coordinates of the "face" neighbor "Nj" ,

z
n

i :’eig')h{;"ing> ;wrameters

1 2 3
= the coordinates of the £ Voronoi point. This point is
found as the center of a circle which passes through three
points. These points are: the central point "I", the "face"
neighbor "Nj" and the next possible neighbor "2" (N‘e ¥ Nj)'
The equations, in matrix form, that determine the (X,Y,Z) -

coordinates of the z“‘ Voronoi point are:
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NOTE: This step describes the "nearest" neighbor algorithm in 2
dimensions (Z=0). Here we just use it to "start" the 3-dimensional
algorithm described below.

d) The process of selecting the rest of the "nearest" neighbors for point
"I" serves a dual purpose. First, we finish calculating the rest of the
"face" neighbors and we also discover the list of "edge" neighbors that
make up the pclygonal "face" that separates Points "I" and "j". An
important point to notice is that the list of "nearest" ncighbors for
point "I" are contained within the sets of "edge" neighbors, i.e., the
"nearest" neighbors are a subset of the "edge" neighbors. Therefore,
by sifting the "edge" neirhbors we obtain a list of unique points that
represent the "face" neighbors for point "I". The "edge" and "face"
neighbor liste will bootstrap each other to completely describe the
polyhedral cell surrounding point "I". The 3-D "nearest" neighbor
selection algorithm is described below.

1) We already know the first "face" neighbor, Nl' and the first

"edge" neighbor, E1 1’ for face one for point "I". These were
frismAd in Qtame 'R h\, and R )



2) Now we calculate the "edge" neighbors for "face" j.

nkin -
;k,j = Index of [min =1 (Hl ()(N)-1 o

© L,y - 1)) =
N CRAERTES R
+ wz cos ((iN)j. it) +

+H3cos(i i)-l»

k=-1' Tt
+ W, 1%, 1] (Eq. 11)
where,
E,.#N. ,
k,] i
Ek,j # Nl,j ,
j= index of the current face ,
k= 2 to K (until Ek+1.j = El,j' where K=number of "edge"
neighbors) ,
Wi = weighting parameters
w1>w2>w3>w4, .
()_(‘N)J. = coordinates of nearest j )

(}7{' ), = coordinates of the zth Voronoi point and ,
\"Ad')

F(SiN)JW { \ / ldiN)le\

- - L2
) xk'lb * (x\’)l - -4

!
Xy

LR

3) From the list of "edge" neighbors, (Ek, k=1, K), we add the
unique indices to the list of "face" neighbors, N, j=1, J).

4) Increment j and continue with Step (d.2). This continues until all
the "face" neigihbors have been calculated, i.e., J > j. J is the

number of "face" neighbors that are associated with point "I".

L
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